2,230 research outputs found

    The dependence of the pairwise velocity dispersion on galaxy properties

    Full text link
    (abridged) We present measurements of the pairwise velocity dispersion (PVD) for different classes of galaxies in the Sloan Digital Sky Survey. For a sample of about 200,000 galaxies, we study the dependence of the PVD on galaxy properties such as luminosity, stellar mass (M_*), colour (g-r), 4000A break strength (D4000), concentration index (C), and stellar surface mass density (\mu_*). The luminosity dependence of the PVD is in good agreement with the results of Jing & B\"orner (2004) for the 2dFGRS catalog. The value of \sigma_{12} measured at k=1 h/Mpc decreases as a function of increasing galaxy luminosity for galaxies fainter than L*, before increasing again for the most luminous galaxies in our sample. Each of the galaxy subsamples selected according to luminosity or stellar mass is divided into two further subsamples according to colour, D4000, C and \mu_*. We find that galaxies with redder colours and higher D4000, C, and \mu_* values have larger PVDs on all scales and at all luminosities/stellar masses. The dependence of the PVD on parameters related to recent star formation(colour, D4000) is stronger than on parameters related to galaxy structure (C, \mu_*), especially on small scales and for faint galaxies. The reddest galaxies and galaxies with high surface mass densities and intermediate concentrations have the highest pairwise peculiar velocities, i.e. these move in the strongest gravitational fields. We conclude that the faint red population located in rich clusters is responsible for the high PVD values that are measured for low-luminosity galaxies on small scales.Comment: 14 pages, 13 figures; reference updated and text slightly changed to match the published version; data of measurements of power spectrum and PVD available at http://www.mpa-garching.mpg.de/~leech/papers/clustering

    Thermal Diagnostics with the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory: A Validated Method for Differential Emission Measure Inversions

    Full text link
    We present a new method for performing differential emission measure (DEM) inversions on narrow-band EUV images from the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO). The method yields positive definite DEM solutions by solving a linear program. This method has been validated against a diverse set of thermal models of varying complexity and realism. These include (1) idealized gaussian DEM distributions, (2) 3D models of NOAA Active Region 11158 comprising quasi-steady loop atmospheres in a non-linear force-free field, and (3) thermodynamic models from a fully-compressible, 3D MHD simulation of AR corona formation following magnetic flux emergence. We then present results from the application of the method to AIA observations of Active Region 11158, comparing the region's thermal structure on two successive solar rotations. Additionally, we show how the DEM inversion method can be adapted to simultaneously invert AIA and XRT data, and how supplementing AIA data with the latter improves the inversion result. The speed of the method allows for routine production of DEM maps, thus facilitating science studies that require tracking of the thermal structure of the solar corona in time and space.Comment: 21 pages, 18 figures, accepted for publication in Ap

    Self-adjoint symmetry operators connected with the magnetic Heisenberg ring

    Full text link
    We consider symmetry operators a from the group ring C[S_N] which act on the Hilbert space H of the 1D spin-1/2 Heisenberg magnetic ring with N sites. We investigate such symmetry operators a which are self-adjoint (in a sence defined in the paper) and which yield consequently observables of the Heisenberg model. We prove the following results: (i) One can construct a self-adjoint idempotent symmetry operator from every irreducible character of every subgroup of S_N. This leads to a big manifold of observables. In particular every commutation symmetry yields such an idempotent. (ii) The set of all generating idempotents of a minimal right ideal R of C[S_N] contains one and only one idempotent which ist self-adjoint. (iii) Every self-adjoint idempotent e can be decomposed into primitive idempotents e = f_1 + ... + f_k which are also self-adjoint and pairwise orthogonal. We give a computer algorithm for the calculation of such decompositions. Furthermore we present 3 additional algorithms which are helpful for the calculation of self-adjoint operators by means of discrete Fourier transforms of S_N. In our investigations we use computer calculations by means of our Mathematica packages PERMS and HRing.Comment: 13 page

    Discrimination between pure states and mixed states

    Get PDF
    In this paper, we discuss the problem of determining whether a quantum system is in a pure state, or in a mixed state. We apply two strategies to settle this problem: the unambiguous discrimination and the maximum confidence discrimination. We also proved that the optimal versions of both strategies are equivalent. The efficiency of the discrimination is also analyzed. This scheme also provides a method to estimate purity of quantum states, and Schmidt numbers of composed systems

    Rippling patterns in aggregates of myxobacteria arise from cell-cell collisions

    Get PDF
    Experiments with myxobacterial aggregates reveal standing waves called rippling patterns. Here, these structures are modelled with a simple discrete model based on the interplay between migration and collisions of cells. Head-to-head collisions of cells result in cell reversals. To correctly reproduce the rippling patterns, a refractory phase after each cell reversal has to be assumed, during which further reversal is prohibited. The duration of this phase determines the wavelength and period of the ripple patterns as well as the reversal frequency of single cells

    Fluctuations of the Magnetization in Thin Films due to Conduction Electrons

    Full text link
    A detailed analysis of damping and noise due to a {\it sd}-interaction in a thin ferromagnetic film sandwiched between two large normal metal layers is carried out. The magnetization is shown to obey in general a non-local equation of motion which differs from the the Gilbert equation and is extended to the non-adiabatic regime. To lowest order in the exchange interaction and in the limit where the Gilbert equation applies, we show that the damping term is enhanced due to interfacial effects but it also shows oscillations as a function of the film thickness. The noise calculation is however carried out to all orders in the exchange coupling constant. The ellipticity of the precession of the magnetization is taken into account. The damping is shown to have a Gilbert form only in the adiabatic limit while the relaxation time becomes strongly dependent on the geometry of the thin film. It is also shown that the induced noise characteristic of sd-exchange is inherently colored in character and depends on the symmetry of the Hamiltonian of the magnetization in the film. We show that the sd-noise can be represented in terms of an external stochastic field which is white only in the adiabatic regime. The temperature is also renormalized by the spin accumulation in the system. For large intra-atomic exchange interactions, the Gilbert-Brown equation is no longer valid
    corecore